

\\\ Datasheet

DiClad® Series Laminates

PTFE/Woven Fiberglass/Laminates

DiClad® laminates are woven fiberglass/PTFE composite materials for use as printed circuit board substrates. Precise control of the fiberglass/PTFE ratio, DiClad laminates offer a range of choices from the lowest dielectric constant and dissipation factor to a more highly reinforced laminate with better dimensional stability.

The woven fiberglass reinforcement in DiClad products provides greater dimensional stability than nonwoven fiberglass reinforced PTFE based laminates of similar dielectric constants. The consistency and control of the PTFE coated fiberglass cloth allows Rogers to offer a greater variety of dielectric constants and produces a laminate with better dielectric constant uniformity than comparable non-woven fiberglass reinforced laminates. The coated fiberglass plies in DiClad materials are aligned in the same direction. Crossplied versions of many of these materials are available as CuClad materials.

DiClad laminates are frequently used in filter, coupler, and low noise amplifier applications, where dielectric constant uniformity is critical. They are also used in power dividers and combiners, where low loss is important.

DiClad 527 laminates (Er=2.40–2.65) use a higher fiberglass/PTFE ratio to provide mechanical properties approaching conventional substrates. Other advantages include better dimensional stability and lower thermal expansion in all directions. The electrical properties of DiClad 527 laminates are tested at 1 MHz and 10 GHz, respectively.

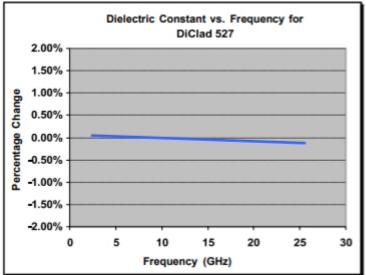
**** Features and Benefits:

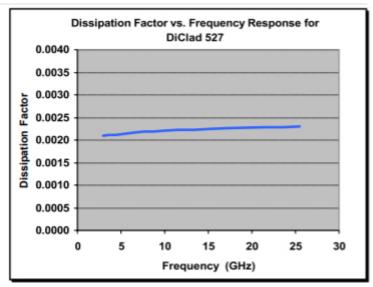
- Extremely Low Loss Tangent
- Excellent Dimensional Stability
- Product Performance Uniformity
- Electrical Properties are Highly Uniform Across Frequency
- Consistent Mechanical Performance
- Excellent Chemical Resistance

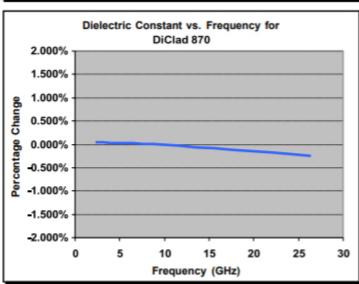
**** Typical Applications:

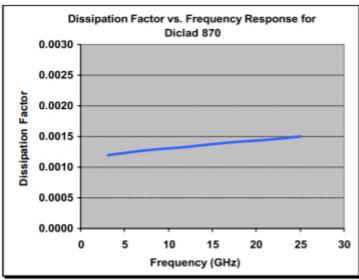
- Military Radar Feed Networks
- Commercial Phased Array Networks
- Low Loss Base Station Antennas
- Missile Guidance Systems
- Digital Radio Antennas
- Filters, Couplers, LNAs

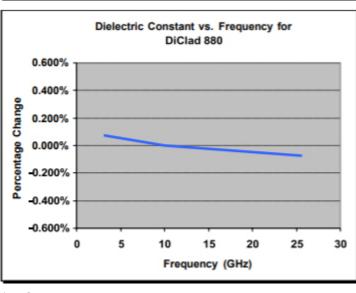
DICLAD SERIES LAMINATES

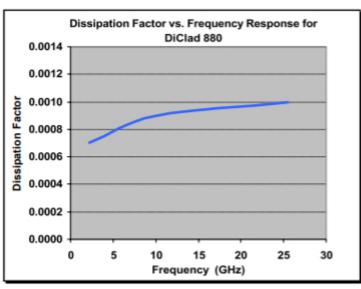



**** Standard Properties Table


Properties		Typical Value ¹			Units	Test Conditions		Test Method
		DiClad 527	DiClad 870	DiClad 870 DiClad 880		lest Conditions		rest Method
Electri	ical Properties	,	,					_
Dielect	ric Constant	2.40-2.60	2.33	2.17, 2.20	-	23°C @ 50% RH	10 GHz	IPC TM-650 2.5.5.5
Dielectric Constant		2.40-2.60	2.33	2.17, 2.20	-	23°C @ 50% RH	1 MHz	IPC TM-650 2.5.5.3
Dissapa	ation Factor	0.0017	0.0013	0.0009	-	23°C @ 50% RH	10 GHz	IPC TM-650 2.5.5.5
Dissapation Factor		0.0010	0.0009	0.0008	-	23°C @ 50% RH	1 MHz	IPC TM-650 2.5.5.3
Thermal Coefficient of Dielectric Constant		-153	-161	-160	ppm/°C	-10 to 140°C	10 GHz	IPC TM-650 2.5.5.5
Volume Resistivity		1.2 x 10 ⁹	1.5 x 10 ⁹	1.4 x 10 ⁹	MΩ-cm	C96/35/90	-	IPC TM-650 2.5.17.1
Surface Resistivity		4.5 x 10 ⁷	3.4 x 10 ⁷	2.9 x 10 ⁶	ΜΩ	C96/35/90	-	IPC TM-650 2.5.17.1
Dielectric Breakdown		>45	>45	>45	kV	D48/50	-	ASTM D-149
Arc Resistance		>180	>180	>180		-	-	ASTM D-495
Therm	nal Properties							
Coeffic	ient of Thermal Expansion - x	14	17	25	ppm/°C	-	50°C to 150°C	IPC TM-650 2.4.41
Coefficient of Thermal Expansion - y		21	29	34	ppm/°C	-	50°C to 150°C	IPC TM-650 2.4.41
Coefficient of Thermal Expansion - z		173	217	252	ppm/°C	-	50°C to 150°C	IPC TM-650 2.4.24
Thermal Conductivity		0.26	0.26	0.25	W/(m·K)	-	-	ASTM E1461
Mecha	anical Properties	'	'			'	'	<u>'</u>
Copper Peel Strength		14	14	14	Lbs/in	10s @288°C	35 µm foil	IPC TM-650 2.4.8
Young's Modulus		517, 706	485, 346	267, 202	kpsi	23°C @ 50% RH	-	ASTM D-638
Tensile Strength (MD, CMD)		19.0, 15.0	14.9, 11.2	8.1, 7.5	kpsi	23°C @ 50% RH	-	ASTM D-882
Compressive Modulus		359	327	237	kpsi	23°C @ 50% RH	-	ASTM D-695
Flex Modulus		537	437	357	kpsi	23°C @ 50% RH	-	ASTM D-3039
Physic	cal Properties		,			1		
Flammability		V-0	V-0	V-0	-	-	C48/23/50 & C168/70	UL 94
Moisture Absorption		0.03	0.02	0.02	%	E1/105+D24/23		IPC TM-650 2.6.2.2
Density		231	2.26	2.23	g/cm³	C24/23/50	Method A	ASTM D792
NASA Outgassing	Total Mass Lost	0.02	0.02	0.01	%	125°C, ≤ 10-6 torr NASA SP-R-0022A		
	Collected Volatiles	0.00	0.00	0.01	%			NASA SP-R-0022A
	Water Vapor Recovered	0.01	0.01	0.0	%	1		


¹ Typical values are a representation of an average value for the population of the property. For specification values contact Rogers Corp.





Column 1 Figures

Demonstrates the Stability of Dielectric Constant across Frequency. This information was correlated from data generated by using a free space and circular resonator cavity. This characteristic demonstrates the inherent robustness of Rogers' laminates across frequency, thus simplifying the final design process when working across EM spectrum. The stability of the Dielectric Constant of AD 1000 laminate over frequency ensures easy design transition and scalability of design.

Column 2 Figures

Demonstrates the Stability of Dissipation Factor across Frequency. This characteristic demonstrates the inherent robustness of Rogers' laminates across frequency, providing a stable platform for high frequency applications where signal integrity is critical to the overall performance of the application

**** Standard Offerings

Standard Thicknesses	Standard Panel Sizes	Standard Claddings			
DiClad 527: 0.020" (0.508mm) +/- 0.0020" 0.030" (0.762mm) +/- 0.0020" 0.060" (1.524mm) +/- 0.0020"	DiClad 527: 12" X 18" (305 X 457mm) 18" X 12" (457 X 305mm) 18" X 24" (457 X 610mm) 24" X 18" (610 X 457mm)	DiClad 527: Electrodeposited Copper Foil 1/2 oz. (18μm) 1 oz. (35μm)			
DiClad 870: 0.031" (0.79mm) +/- 0.0020" 0.093" (2.36mm) +/- 0.0030" 0.125" (3.18mm) +/- 0.0060"	DiClad 870: 8" X 12" (203 X 305mm) 18" X 24" (475 X 610mm)	DiClad 870: Electrodeposited Copper Foil 1/2 oz. (18μm) 1 oz. (35μm)	Rolled Copper Foil 1/2 oz. (18μm) 1 oz. (35μm)		
DiClad 870: 0.020" (0.508mm) +/- 0.0020" 0.030" (0.762mm) +/- 0.0020" 0.060" (1.524mm) +/- 0.0020"	DiClad 880: 12" X 18" (305 X 457mm) 18" X 12" (457 X 305mm) 18" X 24" (457 X 610mm) 24" X 18" (610 X 457mm)	DiClad 880: Electrodeposited Copper Foil 1/2 oz. (18μm) 1 oz. (35μm)	Reverse Treated Electrodeposited Copper Foil 1/2 oz. (18µm) 1 oz. (35µm)		

^{*}Contact Customer Service or Sales Engineering to inquire about other available product configurations including additional thicknesses, panel sizes and claddings:

\\\ 100 S. Roosevelt Avenue \\\ Chandler, AZ 85226 \\\ Tel: 480-961-1382 \\\ Fax: 480-961-4533 \\\ www.rogerscorp.com \\\ IPC Slash Sheet # 4103B/\\\ UL File #

The information in this preliminary data sheet is intended to assist you in designing with Rogers' circuit materials. It is not intended to and does not create any warranties express or implied, including any warranty of merchantability or fitness for a particular purpose or that the results shown on this data sheet will be achieved by a user for a particular purpose. The user should determine the suitability of Rogers' circuit materials for each application. These commodities, technology and software are exported from the United States in accordance with the Export Administration regulations. Diversion contrary to U.S. law prohibited.

The Rogers' logo, Helping power, protect, connect our world, and DiClad are trademarks of Rogers Corporation or one of its subsidiaries. ©2023 Rogers Corporation, Printed in U.S.A., All rights reserved.

Revised 1668 101623 Publication #92-210

