

Flexible Heater Substrate Guide

Helping **power, protect, connect** our world^{*}

ARLON® Flexible Heater Dielectrics

Lightweight Thin design minimizes the material needed

Good Thermal Control Rapid heating and distribution of thermal energy evenly across the surface

Highly Conformable Bendable and flexible; can conform to complex geometries

Durable

Customizable Available in various thicknesses and several colors

Quality Engineering Precisely engineered to customer specifications

Thermally Stable Thermally stable from -50°C to 232°C (-58°F to 450°F)

Flame Resistant Horizontal burn rated at UL 94 HB. V-0 options available

High Dielectric Strength Both silicone and polyimide have dielectric strengths exceeding 500 V/mil

Bondable metal foil elements

Economical Cost-effective solutions

Reliable

Resistant to ozone, moisture, and many common environmental chemicals

Compatible with silicone pressure sensitive adhesive; can be bonded to wire or

Rogers' flexible heater reputation is unmatched in the industry

ARLON Heater Substrates

Rogers offers two lines of substrates for flexible heaters: silicone rubber and polyimide.

Standard Silicone Dielectric

The use of thin, flexible silicone rubber/fiberglass fabric composite materials is the standard for high temperature heaters. Rogers manufactures a full line of silicone rubber/fiberglass fabric composites with UL-recognized relative thermal index (RTI) ratings up to 220°C (428°F), flammability ratings for horizontal burn (HB), and the highest resistance to vertical burn (UL94 V-0) for electrical insulation of flexible heaters. These materials are available with prebonded resistive foils, such as Inconel 600 and stainless steel. This eliminates the initial bonding step which realizes reduced processing costs. Rogers' silicone rubber/ fiberglass fabric composites operate reliably, and offer long service life in both wire-wound and etched foil heater applications.

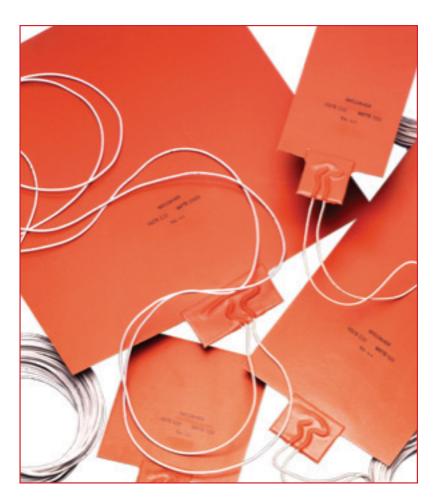


Figure 1. Wire-wound flex heater with silicone substrate.

ARLON Heater Substrates

raPld Polyimide Dielectric

ARLON raPld polyimide substrates are comprised of a revolutionary new construction that incorporates the benefits of polyimide heater dielectrics with the flexibility and usability of a silicone adhesive system. The raPId substrates process in less time and at lower temperatures than competitive acrylic or FEP adhesive systems with zero circuit swimming. The unique silicone adhesive system enables the manufacture of etched-foil and wire-wound flexible heaters with improved thermal stability and low outgassing performance. Flexible heaters manufactured with raPld substrates have a continous operating temperature of 220°C (428°F). They can be bonded to wire or metal foil elements at 121°C (250°F). In the event of an overtemperature situation, either due to a hot spot or a runaway heater, ARLON raPId substrates will not melt like FEP fluoropolymer.

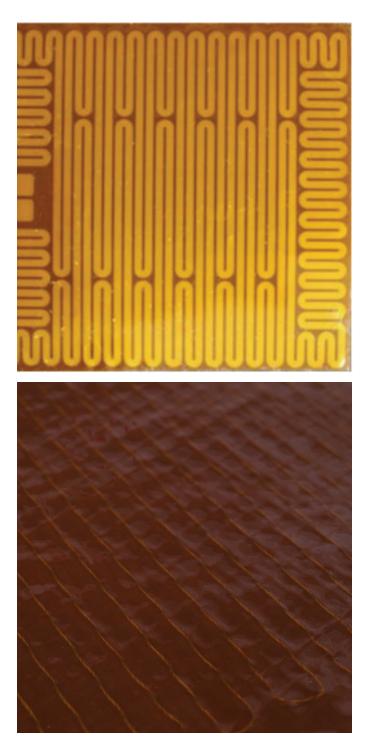


Figure 2. Etched-foil (top) and wire-wound (bottom) flex heaters with polyimide substrates.

Silicone vs. Polyimide	Sil	icone	VS.	Pol	lyim	ide
------------------------	-----	-------	-----	-----	------	-----

This section outlines the advantages or specific design options for each.

	ARLON SILICONE	ARLON raPid POLYIMIDE
Break Strength	12–35 N/mm (70–200 lbf/in)	12 N/mm (70 lbf/in)
Elongation	20–40%	75%
Dielectric Strength	16–39 kV/mm (400–1000 V/mil)	9500 V (nominal)
Bond Strength	1.05–1.75 N/mm (6.0–10 lbf/in)	1.23–2.80 N/mm (7.0–16 lbf/in)
Temperature Range	-58°C to 232°C (-70°F to 450°F)	-50°C to 232°C (-58°F to 450°F)
Flammability Rating	UL 94 HB UL V-0 available	UL 94 HB
Curing Conditions Temperature Pressure Time	100°C–177°C (212°F–350°F) 210 ± 100 kPa (30 ± 15 psi) 5–15 minutes	120°C (248°F) 120 kPa (17.5 psi) 15 minutes
Post-Cure Treatment	2–4 hours @ 204°C (400°F)	n/a
Thickness	0.38+ mm (15+ mil)	0.13 or 0.18 mm (5.0 or 7.0 mil)
Weight	510–980 g/m² (15–29 oz/yd²)	160–370 g/m² (4.6–11 oz/yd²)
Color	Numerous options available	Iron oxide red and translucent
Features	Numerous designs available with and without fiberglass fabric lamination	Available in both generic and Kapton branded polyimide
Laminating	Inconel 600 and SS 304	Inconel 600

All metric conversions are approximate. Typical values should not be used for specification limits. Additional technical information is available.

ADVANTAGES OF A SILICONE	SUBSTRATE
PRODUCT ADVANTAGES	DESCRIPTI
UL Recognized	UL File E54153
Easy to Fabricate	Convertible wit Composites sha Uncured rubbe
Robust Build	Better handles
Customizable	Numerous colo
Fiberglass Reinforced	Makes material
Water Resistant	Silicone forms a

Silicone Substrate Design Options

The silicone substrates designed for flexible silicone type, and substrate construction.

Carrier

The silicone substrates are available with the following carriers: fiberglass-reinforced fabric of thicknesses 0.013, 0.20, or 0.41 mm (5, 8, or 16 mil); PTFE coated fiberglass release liner; or 0.013 mm (5 mil) PET release liner.

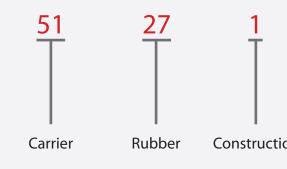
Silicone Type

The different silicones offered differ based on the UL rating. The options are non-UL rated silicone, UL-rated silicone with either 200°C/200°C (392°F/392°F) or 220°C/220°C (428°F/428°F) relative thermal index (RTI), or UL94 V-0 rated silicone.

Constructions

The silicone substrates are offered in several different constructions. On each side of the carrier, there can be cured silicone, uncured silicone, no silicone, or uncured on top of cured silicone.

This section outlines the advantages of each substrate option—silicone and polyimide—and outlines the


FION
3
vith steel rule dies, drag knives, water jet, or hand cutting haped before cure hold their shape afterwards per acts as its own adhesive
es abrasion and mechanical damage than polyimide
lors and constructions available
ial more robust without sacrificing flexibility
s a moisture barrier

The silicone substrates designed for flexible heaters have several customization options: carrier material,

Silicone vs. Polyimide

Product Naming Convention

ADVANTAGES OF A POLYIMIDE SUBSTRATE						
PRODUCT ADVANTAGES	DESCRIPTION					
Quality Engineered	Formulated to eliminate voids, blisters, and bubbles with low/no pick off					
Low Out-gassing	Meets ASTM E595 for low outgassing Less out-gassing than the silicone alternative					
Very Lightweight	Approximately 50% lighter than the silicone material					
Thinner Design	Thicknesses do not exceed 0.18 mm (7 mil)					
Faster Response	Thinner design means less time needed for heat transfer to occur					

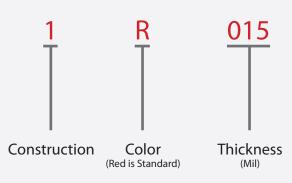
	TARGET/TOLERANCE	TARGET/TOLERANCE (RUBBER = 10)		RUBBER CODE	DESCRIPTION
CODE	(RUBBER = 14, 27, & 98)			10	Non-UL
010	10.0 mil +/- 1.0	10.0 mil +/- 1.5		14	RTI = 200°C/200°C
015	15.0 mil +/- 1.5	15.0 mil +/- 2.0		27	RTI = 220°C/220°C
020	20.0 mil +/- 2.0	20.0 mil +/- 2.5	ľ	98	UL 94 V-0
030	30.0 mil +/- 2.0	30.0 mil +/- 3.0		C2	raPld Polyimide

CODE	CARRIER		CONSTRUCTION CODE					
32	5 mil release PET							
34	5 mil PTFE film		0	1	6	9		
44	5 mil fiberglass fabric	Side 1	Uncured	Uncured	Cured	Uncured on top of cured		
51	8 mil fiberglass fabric	Side i						
55	16 mil fiberglass fabric	Side 2	None	Uncured	Uncured	None		
99	PTFE coated stock							
39	Generic Polyimide							
40	Kapton [®] Polyimide							

Polyimide Substrate Design Options

Options include choice of polyimide type, product thickness, and laminate.

Polyimide Type


Customers can choose between generic polyimide or DuPont Kapton® polyimide.

Product Thickness

Two different product thicknesses are offered. Product thickness options are 0.08mm (3 mil), or 0.013mm (5 mil). Polyimide thickness is constant at 0.05mm (2 mil).

Laminate

raPld substrates are available without a laminate or with Inconel 600 Foil.

raPld Polyimide Heaters

The three raPld technology substrates offered by Rogers are presented below. All products are offered with either generic polyimide or DuPont Kapton[®] polyimide.

TYPICAL APPLICATION	ARLON PRODUCT #	PRODUCT CONSTRUCTION				DIELECTRIC STRENGTH	PLY ADHESION
		SIDE 1	SUBSTRATE	SIDE 2	LAMINATION		
Foil Lamination	40C20N005	Uncured 0.08 mm (3.0 mil) [Clear]	Kapton Polyimide 0.05 mm (2.0 mil)	None	None	9.5 kV	1.6 N/mm (9.0 lbf/in)
Foil Lamination or Wire Encapsulation	40C20R007	Uncured 0.13 mm (5.0 mil) [Red]	Kapton Polyimide 0.05 mm (2.0 mil)	None	None	9.5 kV	2.9 N/mm (17 lbf/in)
Etched Foil Circuit	I40C28N005	Uncured 0.08 mm (3.0 mil) [Clear]	Kapton Polyimide 0.05 mm (2.0 mil)	None	Inconel 600 0.03 mm (1.0 mil)	9.5 kV	1.3 N/mm (7.3 lbf/in)

Silicone Heaters

Several silicone product examples are listed below. Rogers offers a full range of options including specialty fabrics, silicone rubber compounds, colors, thicknesses, construction, liners and more. Please contact us to discuss your specific requirements.

TYPICAL APPLICATION	ARLON PRODUCT #	PRODUCT CONSTRUCTION				DIELECTRIC STRENGTH	PLY ADHESION
		SIDE 1 SILICONE	SUBSTRATE	SIDE 2 SILICONE	LAMINATION		
Bonding	99270R015	Uncured 0.38 mm (15.0 mil)	None	None	None	19.5 kV	n/a
Bonding	51271R015	Uncured 0.10 mm (4.0 mil)	Fiberglass 0.20 mm (8.0 mil)	Uncured 0.08 mm (3.0 mil)	None	6.0 kV	1.2 N/mm (7.0 lbf/in)
Wire Encapsulation or Foil Lamination	51276R015	Uncured 0.10 mm (4.0 mil)	Fiberglass 0.20 mm (8.0 mil)	Cured 0.08 mm (3.0 mil)	None	6.0 kV	1.1 N/mm (6.0 lbf/in)
Wire Encapsulation	55279R030	Uncured 0.20 mm (8.0 mil) + Cured 0.15 mm (6.0 mil)	Fiberglass 0.41 mm (16 mil)	None	None	9.0 kV	1.1 N/mm (6.0 lbf/in)
Waterproof Substrate	34C36R020	Cured 0.17 mm (6.5 mil)	PTFE 0.13 mm (5.0 mil)	Uncured 0.22 mm (8.5 mil)	None	26.8 kV	0.8 N/mm (4.5 lbf/in)
Etched Foil Circuit	S51278R015	Cured 0.08 mm (3.0 mil)	Fiberglass 0.13 mm (5.0 mil) [Red]	Cured 0.14 mm (5.5 mil)	Stainless Steel Foil 0.05 mm (2.0 mil)	6.0 kV	n/a
Etched Foil Circuit	I51576R015	Cured 0.14 mm (5.5 mil)	Fiberglass 0.20 mm (8 mil)	Cured 0.05 mm (2.0 mil)	Inconel 600 0.03 mm (1.0 mil)	11.5 kV	1.2 N/mm 7.0 lbf/in

Rogers Corporation Elastomeric Material Solutions 1100 Governor Lea Road, Bear, DE 19701 USA

Phone: (302) 834-2100 Fax: (302) 834-4021

www.rogerscorp.com/arlon solutions@rogerscorp.com

Helping power, protect, connect our world[®]

The information contained in this Design Guide is intended to assist you in designing with Rogers' Elastomeric Material Solutions. It is not intended to and does not create any warranties, express or implied, including any warranty of merchantability or fitness for a particular purpose or that the results shown in this Design Guide will be achieved by a user for a particular purpose. The user should determine the suitability of Rogers' ARLON products for each application. The Rogers logo, Helping power, protect, connect our world, ARLON and the ARLON logo are trademarks of Rogers Corporation or one of its subsidiaries. Kapton is a trademark of the Dupont Company. © 2018 Rogers Corporation. All rights reserved. 1118-2.5 • Publication #202-178