Substrates are not only available in multiple copper and ceramic thicknesses, but also various design options and product features exist to fit the specific customers’ needs. In this blog, we take a closer look at these features.
Olivier's Twist Blog, Aerospace & Defense, Automotive & EV/HEV, General Industrial, Major Appliances, Rail, Wind & Solar
Yesterday, NASA announced yet another historic moment on Mars: the landing of their most advanced explorer yet, the Perseverance Rover. After a 6-1/2 month long journey from Florida, the rover successfully touched down at the Jezero Crater at 3:55 pm EST.
In this edition we would like to answer a few frequently asked questions to benefit those new to the power electronics community and a refresher training for those experienced in the industry as well.
Olivier's Twist Blog, Aerospace & Defense, Automotive & EV/HEV, General Industrial, Major Appliances, Rail, Wind & Solar
The copper grain size is an important property of Direct Bonded Copper (DBC) substrates. Variations in the copper grain size cannot be fully excluded, but large variations may affect the subsequent assembly processes or the performance of DBC substrates. Module manufacturers can rely on the experience and competence of Rogers' Power Electronics Solutions team to deliver substrates with a consistent grain size.
Olivier's Twist Blog, Aerospace & Defense, General Industrial, Major Appliances, Rail, Wind & Solar
Direct Bonded Copper (DBC) and Active Metal Brazed (AMB) substrates have been available for the last four decades. Together they have made a large contribution to the market adoption and penetration of power modules.
Olivier's Twist Blog, Aerospace & Defense, Automotive & EV/HEV, General Industrial, Major Appliances, Rail, Wind & Solar
The beginning of a new year is a time for resolutions. It is also a perfect opportunity to discuss key principles to design custom Direct Bonded Copper (DBC) and Active Metal Brazed (AMB) substrates.
Olivier's Twist Blog, Aerospace & Defense, Automotive & EV/HEV, General Industrial, Major Appliances, Wind & Solar
In today's blog you will find an interview with Sebastiaan De Boodt, who works for Rogers Corporation.
Olivier's Twist Blog, Aerospace & Defense, Automotive & EV/HEV, General Industrial, Rail, Wind & Solar
Olivier Mathieu talks about the design, internal structure and thermal performance of our micro channel liquid coolers.
Olivier's Twist Blog, Aerospace & Defense, General Industrial, Wired Infrastructure
In the last decade power electronics has gained importance with climate targets set to cut greenhouse gas emissions; therefore increasing renewable energy consumption. The new generation is aware of the environment and pollution challenges that our society is facing, motivating and attracting young engineers to study power electronics.
Olivier's Twist Blog, Aerospace & Defense, Automotive & EV/HEV, General Industrial, Major Appliances, Rail, Wind & Solar
While silicon is the most common element used for power semiconductors, copper is the most popular choice for conductor traces on printed circuit boards (PCBs) and ceramic substrates due to its electrical conductivity.
Olivier's Twist Blog, Aerospace & Defense, Automotive & EV/HEV, General Industrial, Major Appliances, Rail
Dominik Pawlik explains the details about laminated busbars, the advantages and where the busbars are used.
Olivier's Twist Blog, Aerospace & Defense, Automotive & EV/HEV, General Industrial, Rail, Wind & Solar
A Quick Introduction to ROLINX® Laminated Busbar Solutions, Dominik Pawlik explains the details about laminated busbars, the advantages and where the busbars are used.
Olivier's Twist Blog, Aerospace & Defense, Automotive & EV/HEV, General Industrial, Rail, Wind & Solar
In January of 2004, the Mars Opportunity Rover began its mission in the Meridiani Planum region of Mars after a 7 month long journey from its launch in Florida. Originally intended to collect data for 90 days and travel only 1000 meters, Opportunity persevered, completing its mission 15 years and 45 kilometers later.
In the world of electronics, heat can severely shorten the lifetime of a device. It is therefore necessary to move heat away from vital components such as chips, LEDs, and inverters to maintain optimal performance without shortening the lifetime. There are many different thermal management techniques that can be utilized by engineers depending on the devices heat density, space constraints and cost.
Olivier's Twist Blog, Aerospace & Defense, General Industrial, Portable Electronics, Wired Infrastructure
A data sheet is the main source of information for design engineers to understand the overall performance of a power module. It provides a wide variety of values and diagrams but detailed background explanations on each parameter are often missing. On the other hand, a test set up cannot cover all possible applications or operating conditions and the values can vary according to the user's particular application.
Olivier's Twist Blog, Automotive & EV/HEV, Aerospace & Defense, General Industrial, Wind & Solar, Wired Infrastructure
Who cares about flatness? Process and application engineers do! These are not flattering words as they truly know how critical it is to understand and control the shape of one’s substrate, base plate and heat sink in order to achieve the best possible production yield and module performance. In this blog, I want to share with you some information about flatness that you may wish to consider as you design or use power modules.
Olivier's Twist Blog, Aerospace & Defense, Automotive & EV/HEV, General Industrial, Major Appliances, Rail, Wind & Solar
Design engineers are selecting Direct Bonded Copper (DBC) and Active Metal Brazed (AMB) substrates as circuit material for bare semiconductor chips in their power modules as they efficiently dissipate the waste heat from the semiconductors and increase the lifetime of the modules. In this blog, we explain the production process for power modules and highlight the most important characteristics of the substrates at each step of this assembly process.
Olivier's Twist Blog, Aerospace & Defense, Automotive & EV/HEV, General Industrial, Major Appliances, Rail, Wind & Solar
As a design engineer for power electronics systems, you require the selected power module to fulfill its electrical function as described in its data sheet and you expect this module to be reliable meaning that it should operate under given conditions, in a defined period of time and within an acceptable failure rate.
Olivier's Twist Blog, Aerospace & Defense, Automotive & EV/HEV, General Industrial, Major Appliances, Rail, Wind & Solar